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Abstract
In analogy to the interacting real gas the magnetic systems are described like magnons which
form the system of interacting quasi-particles. In order to describe the magnetic systems, firstly
the equation of state for real gas is introduced and next the model is developed in the case of
magnons for the confined geometry. In particular, the applications of magnetic equation of
states for thin films and nanowires with unit cell cross sections as well as for nanoparticles are
considered.

Moreover, the size effect and the critical temperature for the mentioned systems are
investigated. The critical temperature and magnetization exhibit a strong dependence on the
size of the system and the anisotropy of magnetic interaction in the interior and at the surface of
the considered system.

1. Introduction

The development of microelectronics for devices with reduced
dimensional scales constitutes a challenge for physicists
working in nanotechnology. It is a frequent case in
nanoelectronics that the length scales of the fundamental
processes are comparable with the geometrical size of the
device while the fundamental timescales are of the order of
the time parameters of device operation comparable with the
geometrical size of the samples.

From the theoretical point of view micromagnetic theory
as well as first-principles computer calculations seem to be the
best ways to describe phenomena in the nanoscale. Now they
have reached a high level of sophistication and, moreover, they
require relatively time-consuming calculations in comparison
with the analytical treatment of problems. Generally, the above
two methods are not able to bridge several orders of magnitude
in multi-scale problems. The aim of the present paper is
to develop the equation of state for the nanoscale magnetic
objects as the confined systems. In order to describe their
properties we take into account the analogy of the magnetic
equation of state construction to the procedure applied in the
case of the interacting real gas or the solid state crystalline
nano-objects whose particles are considered as phonons. In
this analogy the magnetic systems are described as magnons
which form the system of interacting quasi-particles. For this
purpose we introduce first the equation of state for a real gas,

then we find the analogy to the phonons and finally we develop
a model in the case of magnons.

In the context of nanoparticles the construction of the
model requires consideration of the size effect which should
be taken into account. We investigate the thin films, nanowires
with unit cell cross sections and small nanoparticles for which
the magnetization, its profile as well as the critical temperature
of phase transition in their geometry dependence are discussed.

2. General formalism

An equation of state can be understood as a functional
relation between the state variables for a system in equilibrium
which reduces the number of independent degrees of freedom
necessary to describe the behavior of the system.

For the aim of the present paper we consider the magnetic
system as one of many particular examples. The considerations
are based on the scheme introduced by Toop [1] for the PV T
system (cf appendix). The thermodynamical variables for the
magnetic systems are the intensity of the magnetic field h,
the magnetization M and the temperate T . The analogous
equations to (A.1) and (A.2) given in the appendix for the
magnetic system can be obtained by the substitution h ⇔ −P ,
M ⇔ V and then they can be rewritten in the form [2]

h = T

(
∂h

∂T

)
M

+
(

∂U

∂M

)
T

(1)
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M = T

(
∂M

∂T

)
h

+
(

∂ H

∂h

)
T

. (2)

Multiplying (A.3) and (A.4) it is easy to obtain[
h −

(
∂U

∂M

)
T

] [
M +

(
∂ H

∂h

)
T

]

= T 2

(
∂h

∂T

)
M

(
∂M

∂T

)
h

. (3)

Taking into account the relation [3]

T

(
∂h

∂T

)
M

(
∂M

∂T

)
h

= −(Ch − CM ) (4)

and substituting it in equation (3) we obtain
[(

∂U

∂M

)
T

− h

] [
M +

(
∂ H

∂h

)
T

]
= T (Ch − CM ) (5)

where Ch and CM represent the heat capacity at constant field
and constant magnetization, respectively.

The last equation is called the rigorous equation of state
for magnetic materials. It was obtained by Balcerzak [4] in
analogy to the equation of state for solids, liquids and gases
discussed by Toop [1].

An alternative form of (5) can be proposed by taking into
account the relation

dQ = T dS = T

(
∂S

∂T

)
h

dT + T

(
∂S

∂h

)
T

dh. (6)

For reversible process we can also write

dQ = T dS = T

(
∂S

∂T

)
M

dT + T

(
∂S

∂M

)
T

dN. (7)

(A.6) can be rewritten in the form

dQ = T dS =
[

T

(
∂S

∂T

)
M

+ T

(
∂S

∂M

)
T

(
∂M

∂T

)
h

]
dT

+ T

(
∂S

∂M

)
T

(
∂M

∂h

)
T

dh. (8)

Comparing (8) with (6) we find

Ch = T

(
∂S

∂T

)
h

= CM + T

(
∂S

∂M

)
T

(
∂M

∂T

)
h

. (9)

Substituting (9) in equation of state (5) we obtain an
alternative form of (5):[(

∂U

∂M

)
T

− h

] [
M +

(
∂ H

∂h

)
T

]

= T 2

(
∂S

∂M

)
T

(
∂M

∂T

)
h

. (10)

This form of the equation of state for the magnetic system
seems to be important from the point of view of applications,
for example, for the description of the magnetocaloric
effect (MCE) in magnetic systems as well as of the giant
magnetoresistance in nanoparticles. On the right-hand side
of (10) the derivative of magnetization and entropy appears
with respect to temperature and magnetization, respectively.

As an illustrative example of the present considerations we
would like to show the form of the equation of state for a very
simple case, i.e. for the molecular field approximation. For the
Hamiltonian

H = − 1
2

N∑
i, j

Ji j Si S j − h
N∑

i=1

Si (11)

where Si = ±1, Si is the z component of the spin while N
is the number of spins in the system. In the molecular field
approximation (MFA)

〈Si S j 〉 ≈ 〈Si 〉〈Sj 〉 = m2. (12)

We assume that M = 〈∑i Si 〉 = N〈Si 〉 = Nm. The
internal energy U is given by the relation

U = −1

2
J
∑
i, j

Si S j = − Nz Jm2

2
(13)

while the Gibbs–Boltzmann (BG) entropy is of the form

S = −kB N

2
[(1 + m) ln(1 + m) + (1 − m) ln(1 − m)]

= kB

2

[
(N + M) ln

(
N + M

N

)
+ (N − M) ln

(
N − M

N

)]

(14)

where the enthalpy is 〈H 〉 = 1
2 Nz Jm2 + NhM .

Taking into account the relations (13) and (14) we
substitute them into (10) and obtain(

h + z J M

N

)2 (
∂M

∂h

)
= T 2

(
∂S

∂M

)
T

(
∂M

∂T

)
h

= −kBT 2

2
ln

(
N + M

N − M

)(
∂M

∂T

)
h

. (15)

The last equation is equivalent to the following set of
equations:

(
h + z J M

N

)
= kBT

2
ln

N + M

N − M
(16)

(
h + z J M

N

)(
∂M

∂h

)
T

= −T

(
∂M

∂T

)
h

. (17)

Solving equation (16) with respect to M we obtain the well-
known formula for magnetization:

M(h, T ) = Nth

(
J zM + h N

NkBT

)

= Nth

(
J zm + h

kBT

)
(18)

while equation (17) constitutes the identity which is easy to
verify using the relation (18). For this case we consider here
the equation of state which can be simplified to the equation

[(
∂U

∂M

)
T

− h

]
= T

(
∂S

∂M

)
T

. (19)
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3. Equation of state for the reduced dimension
system

The equation of state introduced above in the form of (10)
or equivalently by (5) is general and can be satisfied for
the finite homogeneous system which is characterized by the
internal energy, enthalpy, entropy and the order parameter,
i.e. magnetization. But the question arrives: how to extend
the equation of state for the inhomogeneous systems such as
the small (nano-) systems characterized by a size of the order
of the correlation length [5] and for the finite case with the
reduced dimension (thin films, multilayers, wires of unit cell
cross section, small nanoparticles)?

To find the answer to the last questions we take into
account the analogy between the considerations presented by
Hill [6] for thin solid films and the approach applied for the
inhomogeneous system due to thermodynamic fluctuations [7].
The inhomogeneity in this case is connected with the
geometrical structure, i.e. the breaking of the translational
symmetry in the direction perpendicular to the surface.

The inhomogeneities can be treated as the deviation of
the thermodynamical quantity from its mean value determined
for the whole system considered as homogeneous. In order to
evaluate the mean value of the global characteristics we divide
the whole inhomogeneous system into identical subsystems
which are assumed to be homogeneous.

The description of the system is achieved by the averaging
procedure used for static fluctuations. The total energy is the
sum of the energies of subsystems which are considered to
be homogeneous. In practice it means the averaging of the
equation of state. In the case of the equation of state for the gas
we have〈[

p +
(

∂U

∂V

)
T

][
V −

(
∂ H

∂ P

)
T

]〉
= 〈T (Cp − CV )〉. (20)

Because p, V and T are the global variables the averaging
of (20) leads to the equation of state for the inhomogeneous
system:[

p +
〈(

∂U

∂V

)
T

〉][
V −

〈(
∂ H

∂ P

)
T

〉]
+ �

= T 〈(Cp − CV )〉 (21)

� =
〈(

∂U

∂V

)
T

〉〈(
∂ H

∂V

)
T

〉
−
〈(

∂U

∂V

)
T

(
∂ H

∂V

)
T

〉
(22)

where the term � given by (22) represents the thermodynamic
correlation for the inhomogeneous system and is a measure
of the inhomogeneity of the system. Of course � = 0
when the system becomes homogeneous. In analogy to the
equation of state for a gas described by variables P , V and
T the equation of state for the magnetic system can also
be introduced. However, we should remember about the
limitation that we consider a small system in the nanoscale.
These limitations are related to the fact that all thermodynamics
is based on the assumption that the number of particles or
atoms N and volume V are very large (N, V → ∞) and
the system is translationally invariant. In the mathematical
language in the thermodynamical limit we should use intensive
quantities, i.e. independent of the size of the system. The

thermodynamical function used for the description of the
system should include the limitations of the finite size of the
system.

In the context of the considerations introduced by Hill [6]
the average value 〈x〉 of the thermodynamic quantity x for the
inhomogeneous system for a thin solid film with thickness d
can be expressed [8] by (21):

〈x〉 = 〈x〉0 + 1

d
〈x〉1 〈x0〉 = 〈x〉3D

〈x〉1 = 〈x〉2D − 〈x〉3D

(23)

where 〈x〉0 denotes the mean value of x when the system
is homogeneous while 〈x〉1 represents the difference between
the two-dimensional and three-dimensional average value of
x . The last formula includes the size effect in the context of
hierarchical equations of state proposed by Hill [6].

If we consider the phonons propagating in the restricted
dimension, for example the thin films of thickness d , the
values of ( ∂U

∂V )0, ( ∂U
∂V )1, (

∂ H
∂p )0, ( ∂ H

∂p )1 can be evaluated by
means of the caloric equation of state for the internal energy
U and enthalpy which, in the case of the pseudoharmonic
approximation [9], leads to the result

(
∂U

∂V

)
1

= −2z1a

(
∂U

∂V

)
0

(24)

where z1 stands for the number of nearest neighbors missing
for the surface atoms while a is the lattice constant. If we
suppose that the volume of the considered system is fixed,
i.e. ( ∂ H

∂p )0 = V0 and ( ∂ H
∂p )1 = 0. Equation (21) for � = 0

can be rewritten in the form of (20) by means of the reduced
variables

p̄ = p
1

1 − 2z1a
d

(25)

and

T̄ = T
1

1 − 2z1a
d

. (26)

The thermal and pressure renormalization is connected
with the lattice vibrations. The renormalization procedure can
be given by the decoupling of the Green functions applied
to the calculations of the thermodynamic averages for the
considered system [10]. The renormalized effective potential
describing the interaction between two atoms embedded in a
system of atoms can be expanded in a series of powers of
the reduced relative mean square displacement of neighboring
atoms from their equilibrium position due to the lattice
vibrations [11].

Next we limit our considerations to the system with
restricted dimensions such as 0D structure-cube, 1D chain of
the finite length and spherical nanoparticle and thin films. In
a later part of this paper, we will consider only the confined
magnetic systems.

3.1. 0D structure

We start our considerations for the structure of a cube given
in figure 1. The exchange integral is independent of the

3
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Figure 1. A single cube as an example of 0D structure.

Figure 2. Magnetization of 0D structure as a function of reduced
temperature T in kB/J units.

crystallographic orientation. Within the MFA this fact leads
directly to the following set of equations for magnetization of
the considered system:

m(0) = tanh

(
Jm(1)z + h

kBT

)

m(1) = tanh

(
Jm(0)z + h

kBT

)
.

(27)

Equation (27) can be solved numerically and the results of
calculations are given in figure 2.

The inhomogeneity of magnetization for the cube is well
seen in spite of the fact that we suppose the isotropic interaction
between the magnetic moment at the lattice side. Next, we
try to estimate the Curie temperature for such a system. For
temperatures close to the Curie temperature we can expand
the tangent hyperbolic into a series and, as a consequence,
the solubility conditions for the set of homogeneous equations
given by (27) leads to

∣∣∣∣ 1 − J z
kB T

− J z
kBT 1

∣∣∣∣ = 0. (28)

The solution of (28) determines the critical temperature given
by kBTC

J z = 1.

Figure 3. Structure of chain with the rectangular cross section in
atomic scale.

3.2. Nanowire

Next, we consider the structure of wires (figure 3) including
the finite number n of elementary cubes presented previously.
As an illustrative example we show the calculations of
magnetization and the critical temperature for n = 3. In
analogy to our earlier considerations, and using the notation
presented in figure 3, the magnetization for such a system is
given by the solution of the following set of equations:

M(1) = tanh

(
Jm(1)

kBT

)

m(1) = tanh

(
4J (M(1) + M(2))

kBT

)

M(2) = tanh

(
J (m(1) + m(2))

kBT

)

m(2) = tanh

(
4J (M(2) + M(3))

kBT

)

M(3) = tanh

(
J (m(2) + m(3))

kBT

)

4
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Figure 4. The inhomogeneity of magnetization for the rectangular
cross-section atomic wires including three unit cells.

m(3) = tanh

(
4J (M(3) + M(4))

kBT

)

M(4) = tanh

(
Jm(3)

kBT

)

(29)

The magnetization is found by numerically solving a set
of equations (29) and the results of calculations are given in
figure 4. We observe that the magnetization of the outer planes
(surfaces) M(4) = M(1) is smaller than in the interior of
the cubic chain. In figure 5 we plot the spatial evolution
of the magnetic moment along the cubic wire at different
temperatures. In the considered case the wire is n = 25a long
(a is the lattice constant). At all temperatures magnetization
exhibits an oscillatory behavior; with an increase of the
temperature the amplitude of magnetization oscillations is
attenuated. Moreover, the magnetic moment at two outer
surfaces is also lower that in the interior of the wire. The
last fact can be easily reversed (magnetic moment at two outer
surfaces can also be higher than the magnetic moment in the
interior of the wire) by the assumption of the exchange constant
at the surface region being different than in the bulk material or
by introducing a different magnetic moment at the surface [12].
The critical temperature TC for the considered case is found by
solving the following equation:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −J z
kBT 0 0 0 0 0

−4J
kBT 1 −4J

kB T 0 0 0 0

0 −4J
kBT 1 −4J

kBT 0 0 0

0 0 −4J
kB T 1 −4J

kBT 0 0

0 0 0 −4J
kBT 1 −4J

kBT 0

0 0 0 0 −4J
kBT 1 −4J

kBT

0 0 0 0 0 −4J
kBT 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (30)

Figure 6 shows an influence of the size effect (length of
wire) on the critical temperature TC. We observe the saturation
of critical temperature for the chain of length larger than
n = 12.

Figure 5. The inhomogeneity of magnetization for the rectangular
cross-section atomic chain versus the number of unit cells in the
chain for various reduced temperatures T in kB/J units.

Figure 6. The critical temperature for the atomic chain of unit cells
versus the length as an example of the confined system. We consider
only the case when Js = Jb.

3.3. Thin film

The thin layer is usually treated as a set of monoatomic layers
parallel to the surfaces. In this case the total thickness of a film
is d = na where n is the number of monoatomic layers while
a is the distance between two successive layers.

Each atom situated at the lattice side in the infinite plane
(2D system) is surrounded by its z0 nearest neighbors while
the same atom embedded in a 3D structure has z = z0 + 2z1

neighboring atoms.
As a consequence, the difference of the internal energy

derivative with respect to magnetization m for 3D system and
2D systems is equal to(

∂U

∂m

)
2D

−
(

∂U

∂m

)
3D

= −2z1 Jm (31)

and it has a negative sign, for example, in the case of the
sc(100) lattice z0 = 4 and z1 = 1. Breaking translational

5
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symmetry in the direction perpendicular to the surface leads
to the inhomogeneity of the magnetic order parameter for thin
films. In particular, we consider the magnetic system of the
magnetic moments localized in the crystallographic lattice site.
For the confined systems we assume that 〈x〉 = m, which leads
to the following expressions for ( ∂U

∂m )T and ( ∂S
∂m ):

∂U

∂m
= −Nz Jm → −Nz J

(
m + 1

n
m1

)
(32)

∂S

∂m
= −kBT

2
ln

(
1 + m

1 − m

)

→ −kBT

2

[
n

(
1 + m + 1

n m1

1 − m − 1
n m1

)]
(33)

where m1 denotes the difference of magnetization between the
two-dimensional and three-dimensional structures.

Taking into account the relations (32) and (33) and
substituting them in (19) we obtain the equation of state which
can be easily transformed to the form[(

∂U

∂M

)
T

− h̃

]
= T̃

(
∂S

∂M

)
T

(34)

in terms of reduced variables

h̃ = h(
1 + 1

n
〈x〉1

〈x〉0

) (
1 + 1

n
〈y〉1

〈y〉0

) (35)

T̃ = T(
1 + 1

n
〈x〉1

〈x〉0

) (
1 + 1

n
〈y〉1

〈y〉0

) (36)

where (34) for thin films is of the same form as (19) for the
massive (bulk) material but it is written in terms of reduced
variables h̃, T̃ which depend on the size of the sample. It
means that the equation of state includes the size effect which is
at the same time predicted for the phase transition temperatures
and the instability points.

The critical temperature [13] can be determined from the
equation

J z = kBT̃C = kBTC(n)(
1 + 1

n
m1
m0

)

×
⎧⎨
⎩1 + ln

⎡
⎣ 1 + m0

(
1 + 1

n
m1
m0

)
(1 − m0)

(1 + m0)
(

1 + m0

(
1 + 1

n
m1
m0

))
⎤
⎦
⎫⎬
⎭

−1

(37)

and leads to the following relation:
TC(n)

TC(∞)
=
(

1 + 1

n

m1

m0

)

×
{

1 + ln

[
1 + m0

(
1 + 1

n
m1
m0

)
(1 − m0)

(1 + m0)
(
1 + m0

(
1 + 1

n
m1
m0

))
]}

. (38)

The final formula for the critical temperature is given by
TC(n)

TC(∞)
=
(

1 − 2z1

z

1

n

)

×
{

1 + ln

[
1 + m0

(
1 − 2z1

z
1
n

)
(1 − m0)

(1 + m0)
(
1 + m0

(
1 − 2z1

z
1
n

))
]}

. (39)

Thus, the critical temperature for the considered system
depends also on the size effect. Next, we consider the size
effect in the case of a nanoparticle.

Figure 7. Schematic illustration of spherical particles. The
quantization axes are oriented in one direction parallel to the z axis.
(a) 3D plot of nanoparticle with bcc lattice type, (b) 2D cross section
of nanoparticle, R(1), R(2) and R(3) represent the radius of
successive shells measured from the middle of nanoparticle.

3.4. Nanoparticle

A schematic illustration of nanoparticles is presented in
figure 7. The breaking of translational symmetry in the
direction perpendicular to the surface leads as a consequence to
the fact that surface effects dominate the magnetic properties.
Moreover, for the particles with diameters of the order of
8 nm 50% of atoms lie on the surface. This fact is much
more pronounced still when the diameter of nanoparticles
decreases. The magnetization near the surface can be
lower [14, 15] or higher than in the interior [16] of a
nanoparticle. The Mössbauer spectroscopy of maghemite
performed for nanoparticles shows that the observed spectrum
contains two components: one of them is associated with the

6
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Figure 8. The number of electrons in shells as a function of distance
in lattice constant units from the middle of a spherical particle. The
upper panel shows the case when the sphere is filled only by whole
cubes. The lower panel shows spherical particles occupying all
lattice sites less than or equal to the radius R.

atoms on the surface and the second in the interior [17]. The
same effect was observed for the cobalt nanoparticles [18].

Recent experiments exhibited particle size scaling laws
observed in the resonance peak frequency in the case of Fe–
Ni nanoparticle [9]. The theoretical interpretation and analysis
was made by Ferchmin and Puszkarski [20].

The magnetic fluctuation in the system of hematite
nanoparticles has been investigated by means of inelastic
neutron scattering [21]. The observed width of the inelastic
peak increases with increasing temperature, which was
correlated with the dynamics of spin waves in the particle
for q = 0. Taking into account the last fact and using the
spin wave model Mørup and Hansen [22] showed that the
uniform precession mode which corresponds to a spin wave
with wavevector q = 0 is predominant in nanoparticles.

The theoretical treatment of spin wave excitations was
developed by Ferchmin and Puszkarski [23] using the matrix
theory.

We start our considerations from spherical nanoparticles
having a bcc crystallographic structure. First, we choose the
middle of the nanoparticle and successive atoms occupying the
lattice sides up to the diameter of the sphere. We suppose at
the beginning that the sphere is packed (filled) only by whole
cubes. In this case the nanoparticle is defined by the central
spin located at the middle of the sphere and numbered as 1
and the other spins are situated on the shells around the middle
of the particle and numbered 2, 3, . . . , n, where n denotes
the total number of spherical shells and represents also the
final shell of the surface of the nanoparticle. In figure 8 we
present the distribution of spins on the successive shells for

the nanoparticle of diameter D =
√

(7a)2 + (
√

2a)2 = √
51a

(N = 7), where N is the number of cubes which are packed
into a distance equal to the diameter of the particle (D in
this case represents a diagonal of a chain of N = 7 cubes),

Figure 9. The critical temperature for spherical nanoparticles as a
function of the number of shells.

where a is the lattice constant for two cases. The first case
(upper panel in figure 8) is when the sphere is packed by the
whole elementary cells and the second (lower panel in figure 8)
is when we suppose that all lattice sites are occupied. The
distance is less than D/2 (when the sphere is packed by the
partial elementary cells). In these two cases we have different
packing coefficients (defined as a number of surface atoms
to the total number of atoms in nanoparticle) at the surface.
The difference is clearly seen because these additional shells
constitute the surface region and, as a consequence, contribute
to the surface effect. The label ‘surface region’ in figure 8
physically represents a few shells which constitute the external
border of the sample. For further considerations we will
discuss only nanoparticles of a spherical shape.

In figure 9 we show the influence of the size effect
on the critical temperature of the spherical nanoparticle.
The calculations are based on the formula (39) applied for
the nanoparticle structure. It is observed that the critical
temperature increases or decreases with an increase in the
diameter of the particles and next tends to the saturation
value; moreover, a strong dependence on the surface exchange
constant is seen. The effect is strong for nanoparticles with a
diameter less than 5a and depends also strongly on the value of
the exchange constant at the surface Js (the ratio Js/Jb). The
size effect is much more pronounced when the ratio Js/Jb is
larger (stronger magnetic interaction at the surface).

Figure 10 shows the profile of magnetization for a particle
of diameter D = 4.36a (N = 7) for the case when Js = Jb.
We observe that the magnetic moment at the surface is lower
than in the middle of the particle. The oscillations across
the radius of the nanoparticle are observed and the character
of these oscillations as a function of reduced temperature
is conserved. An analogous profile of magnetization for
nanoparticles of diameter D = 3.46a is shown in figure 11.
The oscillations across the radius of the nanoparticle are
attenuated with an increase in reduced temperature and the
magnetic moment at the surface is lower than in the middle
of the particle. In figure 12 we show the inhomogeneity of
magnetization for the nanoparticle of diameter D = 3.46a for

7
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Figure 10. The inhomogeneity of magnetization for the spherical
particle including seven shells Js = Jb.

Js = 5Jb. The oscillatory character is conserved but the strong
anisotropy of the magnetic interaction leads to higher magnetic
moment at the surface in comparison with the magnetic
moment in the interior of a particle. Finally, figure 12 shows
and confirms the importance of the surface (here understood
as the outer shell constituting the surface). In both the cases
presented the magnetic moment at the surface is slightly higher
than in the middle of the particle and less than in the interior
of the particle. The significant importance of the surface
finds experimental confirmation in the Mössbauer spectra of
γ –Fe2O3 where the spectrum contains two components: one
associated with the interior (bulk) of the particle and the second
one with the atoms on the surface. The thickness of the surface
region was estimated from the experiment as a layer of range
thickness of 0.35 nm [24]. The effect of surface and finite
size was considered also in [25], where the authors studied
the thermal and spatial dependence of the magnetization of
small nanoparticles on the simple cubic structure using the
Monte Carlo technique. The state of the surface and the finite
size effect were also considered in [26] in the context of their
influence on the spin excitation spectrum.

By comparing figure 11 with 12 we can observe the
oscillations of magnetization in the surface region versus
temperature in the bcc structure. We should remember that
if the number of surface atoms (spins) is larger the surface
effect is much more pronounced. In all calculations and results
presented earlier we suppose that in the majority of cases the
interactions between the spins have an isotropic character. The
assumption that the exchange constant has anisotropic nature,
i.e. the surface atom interacts with another spin with exchange
constant Js while in the bulk it interacts with the coupling
constant Jb, leads as a consequence to a different profile of
magnetization close to the surface region. When Js < Jb it
is possible to obtain the magnetization value which reduces
close to the surface. In this case the observed magnetization
oscillations are weaker.

Figure 11. The profile of magnetization across the radius of particle
(D = 3.46a) for different values kBT/J and Js = Jb.

Figure 12. The profile of magnetization across the radius of particle
(D = 3.46a) for different values kBT/J and Js = 5Jb.

4. Conclusions

The equation of state for magnetic systems was introduced
in the context of the confinement of small systems in the
nanoscale.

We considered the systems with confined dimensions such
as 0D structure-cube, 1D wires represented by the chain of
cubes with finite length, thin films and small nanoparticles.

Figures 4 and 5 show the inhomogeneity of magnetization
for atomic rectangular cross-section wires and confirm the
different behavior of the core and the surface contribution.
The experimental investigations of the finite size effect in
ZnO nanowires [31] show the enhancement of conductivity.
This fact can be explained by the increase of the carrier
concentration contributed by the enriched surface states and
confirms that the surface plays a dominant role in the electrical
and optical properties of the quasi-one-dimensional materials.

The typical behavior of critical temperature described by
formula (39) was observed experimentally in thin films of
Ni [34, 35] for different surface orientations.

8
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The present paper brings several characteristics of
nanoparticles obtained due to the size effect which appears
in the system with restricted dimensions. Some of them
are considered by other authors in their papers. First of all
we would like to compare our results with the calculations
presented by Mørup and Hansen [19] where the authors used
the spin wave model to calculate the temperature dependence
on the magnetization for a magnetic nanoparticle. The uniform
precession mode is predominant in the nanoparticle and it gives
rise to an approximately linear temperature dependence on
magnetization in the low temperature limit. In the paper of
Levy et al [27] the spin wave excitations were considered in
the case of Co dots. The results show that in 2D systems the
magnetization is determined by the value of the edge and bulk
anisotropy. In the paper by Ferchmin and Puszkarski [20] the
theoretical interpretation and analysis show in the case of Fe–
Ni nanoparticles [28] that experiments exhibited particle size
scaling laws observed in the resonance peak frequency.

The results which are particularly interesting refer to the
behavior of the size effect for the Curie temperature shown in
figure 10. We can see that the critical temperature increases or
decreases with an increase of the diameter of particles and next
tends to the saturation value; moreover, a strong dependence
on the surface anisotropy is observed. The effect is stronger for
nanoparticles with diameters less than 5.2a and depends also
on the ratio of the exchange constant Js/Jb. The size effect is
much more pronounced when the ratio Js/Jb is larger (larger
anisotropy of magnetic interaction at the surface). The curves
in figure 10 can be compared with the paper of Wesselinova
and Apostolova where the authors used the Green’s function
technique in real space, which enabled us to calculate the
excitation energy as well as the magnetization as a function of
temperature. In the cases of the results presented in figure 12
the magnetic moment at the surface is slightly higher than in
the middle of the particle and lower than in the interior of the
particle. The fact of significant importance of the surface role
finds experimental confirmation in the Mössbauer spectra of
γ –Fe2O3 where the spectrum contains two components—one
associated with the interior (bulk) of a particle and the second
one associated with the atoms on the surface. The thickness
of the surface region was estimated from the experiment as a
layer of range thickness of 0.35 nm [29], that is, a range of less
than two lattice constants.

The presented calculations show that the surface
contribution to magnetization exhibits a different behavior than
that of the core magnetization. Moreover, the local magnetic
moment decreases with the increase of distance from the center
of a particle. If we suppose that the value of the exchange
constant is of the same value at the surface and in the interior of
the material, the magnetization of the middle of a nanoparticle
is higher than at the surface (figures 10 and 11).

The enhanced value of the exchange constant at the
surface leads to a higher magnetic moment at the surface and
the enhancement of the surface contribution as well as to a
higher critical temperature of the considered system. Similar
results were presented by Kachkachi et al [29] where the
authors used the Monte Carlo technique for the nanoparticles
of the simple cubic structure with different shapes.

The influence of the finite size effect on the critical
temperature has been investigated experimentally for Co3O4

nanoparticles [30]. The obtained results show that the change
of the critical temperature due to the geometrical confinement
effect is proportional to (1/R)1.1±0.2.

The importance of the size effect and as well as the surface
effects was also confirmed in Monte Carlo simulation [33] for
a model of a γ –Fe2O3 (maghemite) single particle [32]. A
reduction of the magnetic ordering temperature, magnetization
and coercive field is reported as the particle size is decreased.
These facts can be interpreted as a consequence of the
formation of a surface layer with a higher degree of magnetic
disorder than that of the core which, for small sizes, dominates
the magnetization process of the particle. The calculations
confirm the role played by the surface.

Summing up, the size effect is important mainly for
particles of diameters less than or equal 5.2a (a is the lattice
constant) if we suppose that the exchange constant is 1

5 Jb �
Js � 5Jb. Moreover, the critical temperature of nanoparticles
exhibits a strong dependence on the ratio Js/Jb.

Appendix

A rigorous equation of state for solids, liquids and gases has
been presented by Toop [1] for the PV T system. In particular,
it reduces to the form of the van der Waals equation for
gas. The thermodynamic relations connecting the pressure
P , volume V and temperature T are well known in the
literature [2] and can be written as

P = T

(
∂ P

∂T

)
V

−
(

∂U

∂V

)
T

(A.1)

V = T

(
∂V

∂T

)
p

+
(

∂ H

∂ P

)
T

(A.2)

where U and H represent the molar energy and molar enthalpy,
respectively.

(A.1) and (A.2) can be rewritten as follows:

P +
(

∂U

∂V

)
T

= T

(
∂ P

∂T

)
V

(A.3)

and

V −
(

∂ H

∂ P

)
T

= T

(
∂V

∂T

)
p

. (A.4)

Multiplying (A.3) and (A.4) it is easy to obtain[
P +

(
∂U

∂V

)
T

] [
V +

(
∂ H

∂ P

)
T

]

= T 2

(
∂ P

∂T

)
V

(
∂V

∂T

)
p

. (A.5)

The term on the right-hand side of (A.5) can be written as

T

(
∂ P

∂T

)
V

(
∂V

∂T

)
p

= Cp − CV . (A.6)
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Some comments should be made about the analogy
between (A.5) and (A.6) which represents the van der Waals
(vdW) equation:

(
p + a

V 2

)
(V − b) = RT . (A.7)

The additional change of pressure is proportional to the
number of pairs of interacting particles which are close to
the wall of the reservoir while the effective volume is less
than the whole volume of the system. Parameter b represents
an excluded volume due to the hard core of the particles.
Parameters a and b should be constant but for real gases they
vary with P , V and T .

The vdW equation of state given by (A.7) tends to the
equation of state for the ideal gas in the limit V → ∞ for
a fixed N .

Equation (A.7) can be obtained from (A.5) by setting
in (A.5) U = − a

V and V − T ∂V
∂T = V0. The last equation

leads to
dT

T
= dV

V − V0
. (A.8)

The solution for V is of the following form:

V = V0

(
1 + T

T0

)
(A.9)

where V0 is the excluded volume of the system at temperature
T0.

The present derivation of the equation of state is of a
general character, not only for the different types of interaction,
but, first of all, for the systems which are described by the
canonically conjugated variables.
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